

Control & Dynamic Systems Lab. @SNU

Prof. Hyungbo Shim

Director of CDSL & ERC-ARI

• Ph.D @ SNU (2000)

- Assist. Professor @ Hanyang Univ. (2002 ~ 2003)
- Professor @ SNU (2003 ~ current)

We are working on "Control Theory"

- Develop control algorithms using mathematical tools
- Analyze dynamical behavior of complex systems
- Connect the gap between theory and industrial problems

"Nothing is more practical than a good theory." - Kurt Lewin

Disturbance Observer

- A robust controller that compensates disturbance and uncertainty at once
- So far, successfully used in industry but with limited theoretical basis
- CDSL's solution: "Analyze its behavioral tendency under large bandwidth of Q-filter" ullet
 - ✓ "Necessary and sufficient" condition for robust internal stability
 - ✓ Advanced design for nominal performance recovery (i.e., $y(t) \approx y_n(t)$, $\forall t \ge 0$)
 - ✓ Extensions to nonlinear/MIMO/sampled-data systems, ...

(a) Configuration (b) Root contour w.r.t. Q-filter bandwidth (c) $||y(t) - y_n(t)||$ w/ advanced design

Synchronization

- Study interactions of multiple agents to achieve a common goal in a distributed manner
- Most studies focused on homogeneous agents, which is limited in real world applications
- CDSL's solution: "Diffusive coupling with high gain results in blended dynamics"
 - \checkmark All agents behave in similar manner, which is described by the blended dynamics
 - ✓ Applications of blended dynamics:
 - Distributed estimation problem in sensor network (1)
 - Distributed optimization, e.g. economic dispatch problem in power network (2)

(a) Heterogeneous multi-agent system

(b) Van Der Pol Oscillators with diffusive coupling

Security of Cyber-Physical Systems

- Modern control systems are exposed to critical cyber-attacks (e.g., STUXNET).
- Objective: Discover cyber-attack scenarios & develop its protection/detection methods
- **CDSL's solution:**
 - "Address the security problems from systematic & control-theoretic perspective"
 - ✓ Sampling/robust zero-dynamics attacks: Stealthy attacks utilizing mathematical models
 - ✓ A countermeasure: Utilize generalize hold to modify plant's characteristics
 - Encrypt control systems using fully homomorphic authenticated encryption scheme

Resilient State Estimation

- Objective: Identify sensor attack & estimate state only w/ trustworthy sensors
- Challenges w/ classical approaches: Computational complexity being NP-hard
- **CDSL's solution:**
 - "Install observers for each output & collect and combine partial information of state"
 - \checkmark Prevents the effect of attack from propagating to other estimates
 - ✓ Facilitates error correcting technique \Rightarrow reduces computational burden
 - Extension to uniformly observable systems & distributed attack identification

(a) Estimation failure in classical observer under sensor attack

(b) Implementation of partial observers

State Estimation & Tracking Control of Hybrid System

- Hybrid systems: A dynamical system that exhibits both continuous and discrete behavior
- Its state estimation & tracking control: Not straightforward & requires complex algorithms
- CDSL's solution: "Glue discontinuity of hybrid system using geometric control theory"
 - ✓ Transforms a hybrid system into a continuous-time system without jump
 - ✓ Allows us to use widely-used techniques for continuous-time systems
 - \Rightarrow Offers simplified designs of controller/observer for hybrid systems

