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Feedback control systems under sensor attack

plant:

ẋ = f(x, u) ∈ Rn, u ∈ Rm

y = h(x) + a ∈ Rp

one may design anomaly detector to detect the attack
(motivated by the fault detection technique)
but, zero-dynamics attack for estimation error dynamics can deceive
the anomaly detector1

1e.g., Teixeira, Shames, Sandberg, and Johansson, AUT 2015
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Resilient state estimation problem1

Meaning:
detection of malicious sensor attack
identification of attacked sensors
reconstruction of the state even under sensor attack

Prior research [A, B, C, D, E]
The problem is solvable with the assumptions:

sparse attack: limited attack resource
→ small number of sensors are compromised
redundant sensors: observable despite eliminating several outputs

1[A] Pasqualetti, Dorfler, and Bullo, TAC 2013
[B] Fawzi, Tabuada, and Diggavi, TAC 2014
[C] Chong, Wakaiki, and Hespanha, ACC 2015
[D] Lee, Shim, and Eun, ECC 2015
[E] Shoukry, Nuzzo, Bezzo, Sangiovanni-Vincentelli, Seshiz, and Tabuada, CDC 2015
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Most results are for linear systems

fundamental limitations in attack detection and identification [A]
I includes actuator attack for linear descriptor systems
I characterization of undetectable sensor attack

introduction of redundant observability [B]
I inspired by compressed sensing technique
I relaxation of l0-minimization to convex optimization

observer-based approach [C, D]
I reduced optimization on finite set
I design of multiple observers to search unattacked sensor combination

1[A] Pasqualetti, Dorfler, and Bullo, TAC 2013
[B] Fawzi, Tabuada, and Diggavi, TAC 2014
[C] Chong, Wakaiki, and Hespanha, ACC 2015
[D] Lee, Shim, and Eun, ECC 2015
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Shoukry et al. considered nonlinear systems [E]

they studied the case of nonlinear system with assumption of

x(t) = α(y(t), ẏ(t), ÿ(t), · · · )
u(t) = β(y(t), ẏ(t), ÿ(t), · · · )

(?)

both state and input are determined by measurement output
state reconstruction without input information

→ strong condition of observability

1[E] Shoukry, Nuzzo, Bezzo, Sangiovanni-Vincentelli, Seshiz, and Tabuada, CDC 2015
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Resilient state estimation for uniformly observable systems

Our contribution
We present an attack-resilient estimation scheme for uniformly
observable nonlinear systems

Uniformly observable?

⇔ observable for any input
⇔ state is determined by both output and input1, i.e.,

x(t) = α(y(t), ẏ(t), ÿ(t), · · · , u(t), u̇(t), ü(t), · · · ) (??)

Note:
- (?) of [E] implies (??)
- obs. LTI sys. satisfies (??)

1Teel and Praly, SCL 1994
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1. Preliminaries: a new way of observer construction1

observable LTI system: ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm

yi = Cix, i ∈ [p] := {1, 2, · · · , p}
consider i-th measurement yi only =⇒ may not observable from yi

coordinate change with Kalman observable decomposition
żi = Fizi +Giu

ż′i = F ′i,1zi + F ′i,2z
′
i +G′iu =⇒

yi = Hizi

(Luenberger observer for zi-subsystem)
˙̂zi = Fiẑi +Giu+ Li(yi −Hiẑi)

state recovery

define Φx :=

z1...
zp

 =⇒ x̂ = Ψ

ẑ1...
ẑp


where Ψ: left inverse matrix of Φ

1Tanwani, Shim, and Liberzon, TAC 2013
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Benefit arises when sparse sensor attack exists1

classical state observer

observers for each output

one observer for p outputs
even sparse attack
⇒ estimation fails

p-partial observers for each
output
can preserve many unattacked
observers
so, enables some error correcting
algorithm

1[D] Lee, Shim, and Eun, ECC 2015
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2. Problem formulation & assumptions

plant: ẋ = f(x) + g(x)u, x ∈ Rn, u ∈ R
yi = hi(x) + ai(t), i ∈ [p] = {1, 2, · · · , p}

Assumption (input & state boundedness)
∃Rx > 0, Ru > 0 s.t. ‖x(t)‖ ≤ Rx, |u(t)| ≤ Ru, ∀t ≥ 0

Assumption (q-sparse attack)
up to q sensors are attacked and 2q < p

Let σunattack be the set of indices of unattacked sensors:

σunattack := {i ∈ [p] : ai(t) ≡ 0}

9 / 20



Uniformly observable decomposition3 for each sensor
Assumption (uniformly observable decomposition)
For each yi, system is diffeomorphic to the form

żi = Fi(zi) +Gi(zi)u

ż′i = F ′i (zi, z
′
i) +G′i(zi, z

′
i)u

yi = Hi(zi)

where zi-subsystem with yi is uniformly observable.

By uniform observability, w.l.o.g., zi-subsystem takes2 the form of

żi =


żi,1
żi,2
...

żi,ni

 =


zi,2
...

zi,ni
αi(zi)

+


βi,1(zi,1)

βi,2(zi,1, zi,2)
...

βi,ni(zi,1, · · · , zi,ni)

u
yi = zi,1

2Gauthier, Hammouri, and Othman, TAC 1992
3Shim and Tanwani, IJRNC 2014
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Observability for state recovery by collecting observable parts
To recover x from the partial estimates of observable substate zi, we need a certain
observability.

Let Φ be the mapping from x to the observable substates:z1...
zp

 = Φ(x).

Then, required observability is the existence of a left inverse Ψ of Φ:

x = Ψ


z1...
zp




If Φ is injective immersion or Bi-Lipschitz on the domain of interest,
then ∃ a left inverse Ψ of Φ.
w.l.o.g., Ψ can be taken to be globally Lipschitz.

11 / 20



Redundant observability
For state recovery under sensor attack, we need in fact stronger observability.

Let
σ : the index subset of [p] whose cardinality is p− q
Φσ(x) := stacki∈σ{zi}

Definition
The system is q-redundant observable if

∃ left inverse Ψσ of Φσ, ∀σ ⊂ [p]

Assumption (redundant observability)
The system is 2q-redundant observable.

This means the system is still observable with any p− 2q sensors.

12 / 20
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3. Constructive design

3.1. Partial high gain observers

3.2. Attack-resilient state recovery
with monitoring system



Partial high gain observers
Uniformly observable decomposition assumption immediately yields the high-gain observer
for each observable sub-state zi from yi.

Lemma (High gain observer1)
for each zi, ∃θi � 1, Li(θi) ∈ Rni×1, ki(θi) ∈ R s.t. the observer

˙̂zi =


˙̂zi,1
˙̂zi,2
...

˙̂zi,ni

 =


ẑi,2
...

ẑi,ni
αi(ẑi)

+


βi,1(ẑi,1)

βi,2(ẑi,1, ẑi,2)
...

βi,ni(ẑi,1, · · · , ẑi,ni)

u− Li(θi)(ẑi,1 − yi)

guarantees
‖ẑi(t)− zi(t)‖ ≤ ki(θi)e−

θi
4 t for i ∈ σunattack

where ẑi(0) := 0 and zi(0): bounded.

1Gauthier, Hammouri, and Othman, TAC 1992
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Idea for attack detection & finding unattacked sensors
zσ(t) := stacki∈σ{zi(t)} ∈ Im(Φσ) for all σ and t ≥ 0

zσ ∈ Im(Φσ) ⇐⇒ zσ = Φσ(Ψσ(zσ))

ẑi(t)→ zi(t) for i ∈ σunattack & ẑi(t) 6→ zi(t) for i 6∈ σunattack

Proposition
Under assumptions of q-sparse attack and 2q-redundant observability,

no attack on the sensors yi, ∀i ∈ σ

m
lim
t→∞
‖ẑσ(t)− Φσ(Ψσ(ẑσ(t)))‖ = 0 (♣)

once an index set σ ⊂ σunattack is identified, state is recovered by

x̂(t) := Ψσ(ẑσ(t))

in practice, (♣) is not implementable
14 / 20



Idea for attack detection & finding unattacked sensors
zσ(t) := stacki∈σ{zi(t)} ∈ Im(Φσ) for all σ and t ≥ 0

zσ ∈ Im(Φσ) ⇐⇒ zσ = Φσ(Ψσ(zσ))
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‖ẑσ(t)− Φσ(Ψσ(ẑσ(t)))‖ = 0 (♣)

once an index set σ ⊂ σunattack is identified, state is recovered by

x̂(t) := Ψσ(ẑσ(t))
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Implemented attack detection
Define

residualσ(t) := ‖ẑσ(t)− Φσ(Ψσ(ẑσ(t)))‖

thresholdσ(t) := (Lip(Φσ ◦Ψσ) + 1) max
i∈[p]
{ki(θi)e−

θi
4
t},

(Lip(·) : Lipschitz const)

Theorem (attack detection)
Under assumptions of q-sparse attack and 2q-redundant observability,

∃t, residualσ(t) > thresholdσ(t)⇒ ∃ attacked sensor in σ ⊂ [p]

∀t, residualσ(t) ≤ thresholdσ(t)⇒

‖x̂(t)− x(t)‖ ≤ max
i∈[p]
{Mki(θi)e

− θi
4
t} → 0

as t→∞ where M > 0: a constant
15 / 20



Attack-resilient state recovery with monitoring system
Let σ(j), j = 1, 2, · · · ,

(
p
p−q
)
, be the index subset of [p]

whose cardinality is p− q.

Theorem (Resilient state estimation)
Under assumptions of 2q-sparse attack and q-redundant observability,
monitor the sensor attack by

j ← j + 1 if residualσ(j)(t) > thresholdσ(j)(t),

and construct the estimate by

x̂(t) = Ψσ(j)(ẑσ(j)(t)).

Then, ‖x̂(t)− x(t)‖ ≤ maxi∈[p]{Mki(θi)e
− θi

4
t} → 0 as t→∞.

- unlike [A,B], no need to solve optimization at every time step
- unlike [C], there are just p observers
3[A] Pasqualetti et al., 2013 / [B] Fawzi et al., 2014 / [C] Chong et al., 2013
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example: p = 5, q = 2 ⇒
(

5
5−2
)

= 10 cases

no alarm ⇒ just monitoring & state recovery
next residual immediately available
does not consider all cases at each time step

σ = {1, 2, 3}
↓

{1, 2, 4}
↓

{1, 2, 5}
↓

{1, 3, 4}
↓

{1, 3, 5}
↓

{1, 4, 5}
↓

{2, 3, 4}
↓

{2, 3, 5}
↓

{2, 4, 5}
↓

{3, 4, 5}
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Simulation for toy example
case of p = 4 outputs, q = 1 sparse sensor attack

ẋ1ẋ2
ẋ3

 =

 −2x1
−x1 − x2

−(x1 − x2)2 − x3

+

 1
2

2(x2 − x1)

u

y1
y2
y3
y4

 =


x2 + x3 − (x1 − x2)2

x1 − x3 + (x1 − x2)2

x2 − 2x1
x1 − x2 + x3 − (x1 − x2)2

+


0
a2
0
0

 a2 injected in y2 at t = 3

system is 2-red. observable: any 2 selection of zi’s are left invertible

z1 =

[
x2 + x3 − (x1 − x2)2

−x1 − x2 − x3 + (x1 − x2)2

]
z2 =

[
x1 − x3 + (x1 − x2)2

x3 − 2x1 − (x1 − x2)2

] z3 =

[
x2 − 2x1
3x1 − x2

]
z4 = x1 − x2 + x3 − (x1 − x2)2

∴ resilient state estimation available!
18 / 20



Simulation result: plot of x̃(t) = x̂(t)− x(t)
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Conclusion
Our contribution
We present an attack-resilient estimation scheme for uniformly observable
nonlinear systems

1. nonlinear generalization of resilient estimation scheme

LTI system Uniformly observable system
decomposition Kalman obs. decomp. Uniformly obs. decomp.
state observer Luenberger observer High gain observer

redundancy notion red. full.col.rank red. injective immersion

2. computationally efficient monitoring system
I residual & threshold analysis ⇒ detects every influential attacks
I simple switching logic: searching another estimate candidate only when

attack alarm rings

Thank you for your time! (kjs9044@cdsl.kr)

20 / 20


